Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(15): e2321502121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38564636

RESUMO

The release of paused RNA polymerase II (RNAPII) from promoter-proximal regions is tightly controlled to ensure proper regulation of gene expression. The elongation factor PTEF-b is known to release paused RNAPII via phosphorylation of the RNAPII C-terminal domain by its cyclin-dependent kinase component, CDK9. However, the signal and stress-specific roles of the various RNAPII-associated macromolecular complexes containing PTEF-b/CDK9 are not yet clear. Here, we identify and characterize the CDK9 complex required for transcriptional response to hypoxia. Contrary to previous reports, our data indicate that a CDK9 complex containing BRD4 but not AFF1/4 is essential for this hypoxic stress response. We demonstrate that BRD4 bromodomains (BET) are dispensable for the release of paused RNAPII at hypoxia-activated genes and that BET inhibition by JQ1 is insufficient to impair hypoxic gene response. Mechanistically, we demonstrate that the C-terminal region of BRD4 is required for Polymerase-Associated Factor-1 Complex (PAF1C) recruitment to establish an elongation-competent RNAPII complex at hypoxia-responsive genes. PAF1C disruption using a small-molecule inhibitor (iPAF1C) impairs hypoxia-induced, BRD4-mediated RNAPII release. Together, our results provide insight into potentially targetable mechanisms that control the hypoxia-responsive transcriptional elongation.


Assuntos
Proteínas Nucleares , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regulação da Expressão Gênica , Quinases Ciclina-Dependentes/metabolismo , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fosforilação , Hipóxia , Transcrição Gênica , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
2.
Biol Open ; 13(2)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38304969

RESUMO

Mutations in genes that affect mitochondrial function cause primary mitochondrial diseases. Mitochondrial diseases are highly heterogeneous and even patients with the same mitochondrial disease can exhibit broad phenotypic heterogeneity, which is poorly understood. Mutations in subunits of mitochondrial respiratory complex I cause complex I deficiency, which can result in severe neurological symptoms and death in infancy. However, some complex I deficiency patients present with much milder symptoms. The most common nuclear gene mutated in complex I deficiency is the highly conserved core subunit NDUFS1. To model the phenotypic heterogeneity in complex I deficiency, we used RNAi lines targeting the Drosophila NDUFS1 homolog ND-75 with different efficiencies. Strong knockdown of ND-75 in Drosophila neurons resulted in severe behavioural phenotypes, reduced lifespan, altered mitochondrial morphology, reduced endoplasmic reticulum (ER)-mitochondria contacts and activation of the unfolded protein response (UPR). By contrast, weak ND-75 knockdown caused much milder behavioural phenotypes and changes in mitochondrial morphology. Moreover, weak ND-75 did not alter ER-mitochondria contacts or activate the UPR. Weak and strong ND-75 knockdown resulted in overlapping but distinct transcriptional responses in the brain, with weak knockdown specifically affecting proteosome activity and immune response genes. Metabolism was also differentially affected by weak and strong ND-75 knockdown including gamma-aminobutyric acid (GABA) levels, which may contribute to neuronal dysfunction in ND-75 knockdown flies. Several metabolic processes were only affected by strong ND-75 knockdown including the pentose phosphate pathway and the metabolite 2-hydroxyglutarate (2-HG), suggesting 2-HG as a candidate biomarker of severe neurological mitochondrial disease. Thus, our Drosophila model provides the means to dissect the mechanisms underlying phenotypic heterogeneity in mitochondrial disease.


Assuntos
Drosophila , Complexo I de Transporte de Elétrons/deficiência , Doenças Mitocondriais , Animais , Humanos , Drosophila/genética , Drosophila/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Fenótipo
3.
PLoS Genet ; 19(7): e1010793, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37399212

RESUMO

Mutations in subunits of the mitochondrial NADH dehydrogenase cause mitochondrial complex I deficiency, a group of severe neurological diseases that can result in death in infancy. The pathogenesis of complex I deficiency remain poorly understood, and as a result there are currently no available treatments. To better understand the underlying mechanisms, we modelled complex I deficiency in Drosophila using knockdown of the mitochondrial complex I subunit ND-75 (NDUFS1) specifically in neurons. Neuronal complex I deficiency causes locomotor defects, seizures and reduced lifespan. At the cellular level, complex I deficiency does not affect ATP levels but leads to mitochondrial morphology defects, reduced endoplasmic reticulum-mitochondria contacts and activation of the endoplasmic reticulum unfolded protein response (UPR) in neurons. Multi-omic analysis shows that complex I deficiency dramatically perturbs mitochondrial metabolism in the brain. We find that expression of the yeast non-proton translocating NADH dehydrogenase NDI1, which reinstates mitochondrial NADH oxidation but not ATP production, restores levels of several key metabolites in the brain in complex I deficiency. Remarkably, NDI1 expression also reinstates endoplasmic reticulum-mitochondria contacts, prevents UPR activation and rescues the behavioural and lifespan phenotypes caused by complex I deficiency. Together, these data show that metabolic disruption due to loss of neuronal NADH dehydrogenase activity cause UPR activation and drive pathogenesis in complex I deficiency.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animais , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , NADH Desidrogenase/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Neurônios/metabolismo , Drosophila/metabolismo , Resposta a Proteínas não Dobradas/genética
4.
J Cell Sci ; 136(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36763487

RESUMO

Mitochondria and peroxisomes are dynamic signaling organelles that constantly undergo fission, driven by the large GTPase dynamin-related protein 1 (DRP1; encoded by DNM1L). Patients with de novo heterozygous missense mutations in DNM1L present with encephalopathy due to defective mitochondrial and peroxisomal fission (EMPF1) - a devastating neurodevelopmental disease with no effective treatment. To interrogate the mechanisms by which DRP1 mutations cause cellular dysfunction, we used human-derived fibroblasts from patients who present with EMPF1. In addition to elongated mitochondrial morphology and lack of fission, patient cells display lower coupling efficiency, increased proton leak and upregulation of glycolysis. Mitochondrial hyperfusion also results in aberrant cristae structure and hyperpolarized mitochondrial membrane potential. Peroxisomes show a severely elongated morphology in patient cells, which is associated with reduced respiration when cells are reliant on fatty acid oxidation. Metabolomic analyses revealed impaired methionine cycle and synthesis of pyrimidine nucleotides. Our study provides insight into the role of mitochondrial dynamics in cristae maintenance and the metabolic capacity of the cell, as well as the disease mechanism underlying EMPF1.


Assuntos
Encefalopatias , Dinaminas , Humanos , Potencial da Membrana Mitocondrial/genética , Dinaminas/genética , Dinaminas/metabolismo , Encefalopatias/genética , Encefalopatias/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Mutação/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
5.
Biochem (Lond) ; 44(4): 2-8, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36248614

RESUMO

Mitochondria, special double-membraned intracellular compartments or 'organelles', are popularly known as the 'powerhouses of the cell', as they generate the bulk of ATP used to fuel cellular biochemical reactions. Mitochondria are also well known for generating metabolites for the synthesis of macromolecules (e.g., carbohydrates, proteins, lipids and nucleic acids). In the mid-1990s, new evidence suggesting that mitochondria, beyond their canonical roles in bioenergetics and biosynthesis, can act as signalling organelles began to emerge, bringing a dramatic shift in our view of mitochondria's roles in controlling cell function. Over the next two and half decades, works from multiple groups have demonstrated how mitochondrial signalling can dictate diverse physiological and pathophysiological outcomes. In this article, we will briefly discuss different mechanisms by which mitochondria can communicate with cytosol and other organelles to regulate cell fate and function and exert paracrine effects. Our molecular understanding of mitochondrial communication with the rest of the cell, i.e. mitochondrial signalling, could reveal new therapeutic strategies to improve health and ameliorate diseases.

6.
Development ; 149(20)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35792828

RESUMO

Leigh syndrome (LS) is a rare, inherited neurometabolic disorder that presents with bilateral brain lesions caused by defects in the mitochondrial respiratory chain and associated nuclear-encoded proteins. We generated human induced pluripotent stem cells (iPSCs) from three LS patient-derived fibroblast lines. Using whole-exome and mitochondrial sequencing, we identified unreported mutations in pyruvate dehydrogenase (GM0372, PDH; GM13411, MT-ATP6/PDH) and dihydrolipoyl dehydrogenase (GM01503, DLD). These LS patient-derived iPSC lines were viable and capable of differentiating into progenitor populations, but we identified several abnormalities in three-dimensional differentiation models of brain development. LS patient-derived cerebral organoids showed defects in neural epithelial bud generation, size and cortical architecture at 100 days. The double mutant MT-ATP6/PDH line produced organoid neural precursor cells with abnormal mitochondrial morphology, characterized by fragmentation and disorganization, and showed an increased generation of astrocytes. These studies aim to provide a comprehensive phenotypic characterization of available patient-derived cell lines that can be used to study Leigh syndrome.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Leigh , Células-Tronco Neurais , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Leigh/genética , Doença de Leigh/metabolismo , Mutação/genética , Células-Tronco Neurais/metabolismo , Organoides/metabolismo
7.
Cell Stem Cell ; 28(3): 394-408, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33667360

RESUMO

Recent evidence supports the notion that mitochondrial metabolism is necessary for the determination of stem cell fate. Historically, mitochondrial metabolism is linked to the production of ATP and tricarboxylic acid (TCA) cycle metabolites to support stem cell survival and growth, respectively. However, it is now clear that beyond these canonical roles, mitochondria as signaling organelles dictate stem cell fate and function. In this review, we focus on key conceptual ideas on how mitochondria control mammalian stem cell fate and function through reactive oxygen species (ROS) generation, TCA cycle metabolite production, NAD+/NADH ratio regulation, pyruvate metabolism, and mitochondrial dynamics.


Assuntos
Mitocôndrias , Transdução de Sinais , Animais , Diferenciação Celular , Ciclo do Ácido Cítrico , Mitocôndrias/metabolismo , Células-Tronco
8.
Microb Pathog ; 149: 104293, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32531498

RESUMO

Stenotrophomonas maltophilia is an emerging opportunistic pathogen, and immunocompromised patients are at a higher risk of getting infected with this nosocomial bacterium. The biggest concern is its inherent resistance to most of the commonly used antibiotics, leaving a few options for treatment. Moreover, recent studies have reported the emergence of its resistance to trimethoprim/sulfamethoxazole (TMP/SMX), the drugs of choice against this pathogen. In this study, we employed a subtractive proteome analysis approach to identify new drug targets against Stenotrophomonas maltophilia K279a. We identified 56 proteins to be essential for the survival of this pathogen, 33 of which are exclusively involved in its metabolism. We identified their subcellular locations and performed broad-spectrum analysis, interactome analysis, and functional analysis. Drug targeting properties and docking energy showed that 29 out of 33 proteins have the potential to serve as potential new therapeutic targets, and four proteins (dCTP deaminase, NAD(P)H:quinone oxidoreductase, dihydroneopterin aldolase, and α, α-trehalose-phosphate synthase) bind with high affinity to already approved or experimental drugs. Based on the broad-spectrum analysis and interactome analysis, we identified NAD(P)H:quinone oxidoreductase, dCTP deaminase, Phosphotransferase, and ATP-dependent Clp protease adapter (ClpS) as the most potential therapeutic targets. Notably, phosphotransferase and ClpS are new targets, i.e., they do not interact with any experimental or approved drugs. Overall, our study will guide the development of new and effective drugs for the treatment of Stenotrophomonas maltophilia infection.


Assuntos
Infecções por Bactérias Gram-Negativas , Stenotrophomonas maltophilia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Simulação por Computador , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Humanos , Proteoma , Combinação Trimetoprima e Sulfametoxazol
9.
AMB Express ; 6(1): 126, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28004362

RESUMO

The study aims at revealing the comprehensive contribution of target alteration, target protection and efflux pump to the development of high level of ciprofloxacin (CIP) resistance in Enterobacteriaceae bacteria of environmental, clinical and poultry origins. Antibiotic susceptibility test was used to detect CIP resistant (CIPR) isolates and MICCIP was determined by broth microdilution method. The presence of qnrS gene was identified by PCR and Southern blot hybridization (SBH) confirmed their location. Checkerboard titration demonstrated the effect of NMP on CIP action. PCR followed by sequencing and in silico analysis revealed the contribution of mutations in acrR, marR and gyrA to CIPR development. Out of 152 isolates, 101 were detected as CIPR. Randomly selected 53 isolates (MICCIP 4-512 µg/mL) were identified as Escherichia spp. (26), Enterobacter spp. (7), Klebsiella spp. (5) and Salmonella spp. (15) and of them 31 isolates carried qnrS. qnrS harboring 18 highly CIPR isolates (MICCIP: 256-512 µg/mL) were selected for further study. SBH confirmed 7 isolates harbored qnrS gene in plasmids. The acrA, acrB and tolC were present in all 18 isolates and NMP had an additive (12-isolates) or synergistic (6-isolates) effect on CIP action. Most isolates contained double amino acid (aa) substitutions (S83L and D87N) in QRDR of GyrA resulting in an altered conformation of putative CIP binding pocket. However, some isolates contained single (S83L or S83Y) or no aa substitution but showed high CIPR implicating that the concerted action of three mechanisms is responsible for high CIPR with the most significant role of efflux pump.

10.
AMB Express ; 6(1): 21, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26980601

RESUMO

Arsenic (As) contaminated soils are enriched with arsenotrophic bacteria. The present study analyzes the microbiome and arsenotrophic genes-from As affected soil samples of Bhanga, Charvadrason and Sadarpur of Faridpur district in Bangladesh in summer (SFDSL1, 2, 3) and in winter (WFDSL1, 2, 3). Total As content of the soils was within the range of 3.24-17.8 mg/kg as per atomic absorption spectroscopy. The aioA gene, conferring arsenite [As (III)] oxidation, was retrieved from the soil sample, WFDSL-2, reported with As concentration of 4.9 mg/kg. Phylogenetic analysis revealed that the aioA genes of soil WFDSL-2 were distributed among four major phylogenetic lineages comprised of α, ß, γ Proteobacteria and Archaea with a dominance of ß Proteobacteria (56.67 %). An attempt to enrich As (III) metabolizing bacteria resulted 53 isolates. ARDRA (amplified ribosomal DNA restriction analysis) followed by 16S rRNA gene sequencing of the 53 soil isolates revealed that they belong to six genera; Pseudomonas spp., Bacillus spp., Brevibacillus spp., Delftia spp., Wohlfahrtiimonas spp. and Dietzia spp. From five different genera, isolates Delftia sp. A2i, Pseudomonas sp. A3i, W. chitiniclastica H3f, Dietzia sp. H2f, Bacillus sp. H2k contained arsB gene and showed arsenite tolerance up-to 27 mM. Phenotypic As (III) oxidation potential was also confirmed with the isolates of each genus and isolate Brevibacillus sp. A1a showed significant As (III) transforming potential of 0.2425 mM per hour. The genetic information of bacterial arsenotrophy and arsenite oxidation added scientific information about the possible bioremediation potential of the soil isolates in Bangladesh.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...